Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Annals of Laboratory Medicine ; : 166-169, 2016.
Article in English | WPRIM | ID: wpr-151580

ABSTRACT

Stickler syndrome is a genetically heterogeneous disorder that affects the ocular, auditory, and musculoskeletal systems. Ocular-only variant of Stickler syndrome type 1 (OSTL1) is characterized by high risk of retinal detachment without systemic involvement and is caused by alternatively spliced exon 2 mutation of COL2A1. We report the cases of two Korean families with OSTL1 carrying likely pathogenic variants of COL2A1. All patients presented with membranous vitreous anomaly, peripheral retinal degeneration, and/or rhegmatogenous retinal detachment, but no systemic manifestations. By genetic analysis, two likely pathogenic non-exon 2 variants, c.2678dupC (p.Ala895Serfs*49) and c.3327+ 1G>C, were identified in COL2A1. Our results demonstrate that COL2A1 defects in OSTL1 are not confined to mutations in exon 2. Together with molecular data, ophthalmologists should consider genetic diagnosis of Stickler syndrome in patients with vitreous anomaly to prevent blindness from retinal detachment. To our knowledge, this is the first report of genetically confirmed OSTL1 in Korea.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Arthritis/genetics , Asian People/genetics , Base Sequence , Collagen Type II/genetics , Connective Tissue Diseases/genetics , DNA Mutational Analysis , Exons , Hearing Loss, Sensorineural/genetics , Republic of Korea , Retinal Detachment/genetics , Visual Acuity
2.
Yonsei Medical Journal ; : 277-286, 2015.
Article in English | WPRIM | ID: wpr-174623

ABSTRACT

PURPOSE: To investigate the molecular responses of various genes and proteins related to disc degeneration upon treatment with cytokines that affect disc-cell proliferation and phenotype in living human intervertebral discs (IVDs). Responsiveness to these cytokines according to the degree of disc degeneration was also evaluated. MATERIALS AND METHODS: The disc specimens were classified into two groups: group 1 (6 patients) showed mild degeneration of IVDs and group 2 (6 patients) exhibited severe degeneration of IVDs. Gene expression was analyzed after treatment with four cytokines: recombinant human bone morphogenic protein (rhBMP-2), transforming growth factor-beta (TGF-beta), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha). Molecular responses were assessed after exposure of cells from the IVD specimens to these cytokines via real-time polymerase chain reaction and immunofluorescence staining. RESULTS: mRNA gene expression was significantly greater for aggrecan, type I collagen, type II collagen, alkaline phosphatase, osteocalcin, and Sox9 in group 1 than mRNA gene expression in group 2, when the samples were not treated with cytokines. Analysis of mRNA levels for these molecules after morphogen treatment revealed significant increases in both groups, which were much higher in group 1 than in group 2. The average number of IVD cells that were immunofluorescence stained positive for alkaline phosphatase increased after treatment with rhBMP-2 and TGF-beta in group 1. CONCLUSION: The biologic responsiveness to treatment of rhBMP-2, TGF-beta, TNF-alpha, and IL-1beta in the degenerative living human IVD can be different according to the degree of degeneration of the IVD.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Aggrecans/genetics , Alkaline Phosphatase/genetics , Biological Products/pharmacology , Bone Morphogenetic Protein 2/pharmacology , Collagen Type I/genetics , Collagen Type II/genetics , Cytokines/pharmacology , Fluorescent Antibody Technique , Gene Expression Regulation/drug effects , Interleukin-1/pharmacology , Intervertebral Disc/drug effects , Intervertebral Disc Degeneration/drug therapy , Osteocalcin/genetics , RNA, Messenger/genetics , Recombinant Proteins/pharmacology , SOX9 Transcription Factor/genetics , Transforming Growth Factor beta/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
3.
Braz. j. med. biol. res ; 47(8): 637-645, 08/2014. tab, graf
Article in English | LILACS | ID: lil-716279

ABSTRACT

Tissue engineering encapsulated cells such as chondrocytes in the carrier matrix have been widely used to repair cartilage defects. However, chondrocyte phenotype is easily lost when chondrocytes are expanded in vitro by a process defined as “dedifferentiation”. To ensure successful therapy, an effective pro-chondrogenic agent is necessary to overcome the obstacle of limited cell numbers in the restoration process, and dedifferentiation is a prerequisite. Gallic acid (GA) has been used in the treatment of arthritis, but its biocompatibility is inferior to that of other compounds. In this study, we modified GA by incorporating sulfamonomethoxine sodium and synthesized a sulfonamido-based gallate, JJYMD-C, and evaluated its effect on chondrocyte metabolism. Our results showed that JJYMD-C could effectively increase the levels of the collagen II, Sox9, and aggrecan genes, promote chondrocyte growth, and enhance secretion and synthesis of cartilage extracellular matrix. On the other hand, expression of the collagen I gene was effectively down-regulated, demonstrating inhibition of chondrocyte dedifferentiation by JJYMD-C. Hypertrophy, as a characteristic of chondrocyte ossification, was undetectable in the JJYMD-C groups. We used JJYMD-C at doses of 0.125, 0.25, and 0.5 µg/mL, and the strongest response was observed with 0.25 µg/mL. This study provides a basis for further studies on a novel agent in the treatment of articular cartilage defects.


Subject(s)
Animals , Rabbits , Benzamides/chemical synthesis , Cell Dedifferentiation/drug effects , Cell Proliferation/drug effects , Chondrocytes/drug effects , Phenotype , Pyrimidines/chemical synthesis , Aggrecans/genetics , Aggrecans/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Benzamides/pharmacology , Cell Survival , Cell Dedifferentiation/immunology , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrogenesis/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Glycosaminoglycans/analysis , Immunohistochemistry , Laser Scanning Cytometry , Primary Cell Culture , Pyrimidines/pharmacology , Real-Time Polymerase Chain Reaction , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Tissue Engineering
4.
Clinics in Orthopedic Surgery ; : 379-384, 2014.
Article in English | WPRIM | ID: wpr-223889

ABSTRACT

BACKGROUND: Degenerative lumbar scoliosis (DLS) progresses with aging after 50-60 years, and the genetic association of DLS remains largely unclear. In this study, the genetic association between collagen type II alpha 1 (COL2A1) gene and DLS was investigated. METHODS: COL2A1 gene polymorphism was investigated in DLS subjects compared to healthy controls to investigate the possibility of its association with COL2A1 gene. Based on a single nucleotide polymorphism (SNP) database, SNP (rs2276454) in COL2A1 were selected and genotyped using direct sequencing in 51 patients with DLS and 235 healthy controls. The SNP effects were analyzed using three models of codominant, dominant, and recessive. Logistic regression models were calculated for odds ratios (ORs) with 95% confidence intervals (CIs) and corresponding p-values, controlling age and gender as co-variables. RESULTS: SNP (rs2276454) in COL2A1 was significantly associated with the degenerative lumbar scoliosis in the codominant (OR, 1.90; 95% CI, 1.17 to 3.10; p = 0.008) and dominant models (OR, 3.58; 95% CI, 1.59 to 9.29; p = 0.001). CONCLUSIONS: The results suggest that COL2A1 is associated with the risk of DLS in Korean population.


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Asian People , Collagen Type II/genetics , Lumbar Vertebrae , Polymorphism, Single Nucleotide , Scoliosis/ethnology
5.
Experimental & Molecular Medicine ; : 334-340, 2011.
Article in English | WPRIM | ID: wpr-98917

ABSTRACT

Larger animal models, such as porcine, have been validated as appropriate models of the human disc with respect to biomechanics and biochemistry. They are advantageous for research as the models are relatively straightforward to prepare and easily obtainable for research to perform surgical techniques. The intention of this study was to quantitatively analyze gene expression for collagen and proteoglycan components of the extracellular matrix and for collagenase (MMP-1) in porcine discs of varying ages (Newborn; 2-3weeks, Mature; 6-9 month, Older; 2-3 years). In this study, we observed that the cell number and GAG (glycosaminoglycan) formation dramatically decreased with aging. Also, gene expression in the annulus fibrosus (AF) and nucleus pulposus (NP) cells changed with aging. The level of MMP-1 mRNA increased with age and both type I, II collagens decreased with age. The level of aggrecan mRNA was highest in the mature group and decreased significantly with aging. In the mature group, MMP-1 expression was minimal compared to the newborn group. In AF cells, type II collagen was expressed at a high level in the mature group with a higher level of aggrecan, when aged NP showed a decrease in type II collagen. The model of IVD degeneration in the porcine disc shows many changes in gene expression with age that have been previously documented for human and may serve as a model for studying changes in IVD metabolism with age. We concluded that the porcine model is excellent to test hypotheses related to disc degeneration while permitting time-course study in biologically active systems.


Subject(s)
Animals , Humans , Age Factors , Aggrecans/genetics , Aging/genetics , Animals, Newborn , Collagen Type I/genetics , Collagen Type II/genetics , Glycosaminoglycans/genetics , Intervertebral Disc Degeneration/genetics , Matrix Metalloproteinase 1/genetics , Models, Animal , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/metabolism , Swine
6.
Experimental & Molecular Medicine ; : 684-695, 2010.
Article in English | WPRIM | ID: wpr-193635

ABSTRACT

The study investigated the effects of adenovirus-mediated gene transfection of basic fibroblast growth factor (bFGF), bFGF combined with interleukin-1 receptor antagonist protein (IL-Ra) and/or insulin-like growth factor-1 (IGF-1) both in human osteoarthritis (OA) chondrocytes and rabbits OA model. Human OA chondrocytes were delivered by adenovirus-mediated bFGF, IL-Ra and IGF-1 vectors, respectively. Chondrocyte proliferation, glycosaminoglycan (GAG) content, expression of type II collagen, ADAMTS-5, MMP-13, MMP-3 and TIMP-1 were determined. Rabbit OA model was induced by anterior cruciate ligament transaction (ACLT) in knees. Adenoviral vectors encoding human bFGF, IL-Ra and IGF-1 were injected intraarticularly into the knee joints after ACLT. The effects of adenovirus- mediated gene transfection on rabbit OA were evaluated. In vitro, the transfected genes were expressed in cell supernatant of human OA chondrocytes. AdbFGF group significantly promoted chondrocyte proliferation, and increased GAG and type II collagen synthesis than in the OA group. As two or three genes were transfected in different combinations, there was significant enhancement on the GAG content, type II collagen synthesis, and TIMP-1 levels, while ADAMTS-5, MMP-13, and MMP-3 levels were reduced. In vivo, the transfected genes were expressed in synovial fluid of rabbits. Intraarticular delivery of bFGF enhanced the expression of type II collagen in cartilage and decreased cartilage Mankin score compared with the OA control group (P = 0.047; P < 0.01, respectively). Multiple-gene transfection in different combinations showed better results than bFGF transfection alone. This study suggests that bFGF gene transfection is effective in treating experimental OA. Multiple gene transfection has better biologic effects on OA.


Subject(s)
Animals , Humans , Rabbits , Adenoviridae/genetics , Chondrocytes/drug effects , Collagen Type II/genetics , Fibroblast Growth Factor 2/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Insulin-Like Growth Factor I/genetics , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-1/genetics , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3/genetics , Osteoarthritis/therapy , Tissue Inhibitor of Metalloproteinase-1/genetics , Transfection
7.
Mem. Inst. Oswaldo Cruz ; 104(2): 162-169, Mar. 2009. tab, ilus
Article in English | LILACS | ID: lil-533502

ABSTRACT

Analysing human genetic variation provides a powerful tool in understanding risk factors for disease. Toxoplasma gondii acquired by the mother can be transmitted to the fetus. Infants with the most severe clinical signs in brain and eye are those infected early in pregnancy when fetal immunity is least well developed. Genetic analysis could provide unique insight into events in utero that are otherwise difficult to determine. We tested the hypothesis that propensity for T. gondii to cause eye disease is associated with genes previously implicated in congenital or juvenile onset ocular disease. Using mother-child pairs from Europe (EMSCOT) and child/parent trios from North America (NCCCTS), we demonstrated that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4 previously associated with juvenile onset retinal dystrophies including Stargardt's disease. Polymorphisms at COL2A1 encoding type II collagen, previously associated with Stickler syndrome, associated only with ocular disease in congenital toxoplasmosis. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting, which provided an explanation for the patterns of inheritance observed. These genetic and epigenetic risk factors provide unique insight into molecular pathways in the pathogenesis of disease.


Subject(s)
Female , Humans , Infant, Newborn , Pregnancy , ATP-Binding Cassette Transporters/genetics , Collagen Type II/genetics , Toxoplasmosis, Cerebral/genetics , Toxoplasmosis, Congenital/genetics , Toxoplasmosis, Ocular/genetics , Epigenesis, Genetic/genetics , Genotype , Polymorphism, Single Nucleotide
8.
Yonsei Medical Journal ; : 375-379, 2009.
Article in English | WPRIM | ID: wpr-110999

ABSTRACT

PURPOSE: The objective of this study was to determine the phenotypic characterization of ligamentum flavum cells from patients with ossification of the ligamentum flavum (OLF). MATERIALS AND METHODS: Ligamentum flavum tissues were harvested from OLF and non-OLF patients during surgery. OLF and non-OLF cells were isolated from explant cultures. Cultured cells were analyzed using immunofluorescence staining and reverse transcription-polymerase chain reaction. RESULTS: OLF cells exhibited various appearances compared with the typical fibroblast-like morphology of non-OLF cells. Expressions of collagen type I and collagen type III were observed in OLF and non-OLF cells. OLF cells uniquely expressed osteocalcin, which is a marker for osteoblasts, and collagen type II which is a marker for chondrocytes, whereas they were negative in non-OLF cells. CONCLUSION: These findings indicate that OLF cells have phenotypic characterization of osteoblasts and chondrocytes which could play a role in the pathophysiology of OLF.


Subject(s)
Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Cells, Cultured , Collagen Type I/genetics , Collagen Type II/genetics , Collagen Type VI/genetics , Ligamentum Flavum/metabolism , Microscopy, Fluorescence , Ossification, Heterotopic/metabolism , Osteocalcin/genetics , Reverse Transcriptase Polymerase Chain Reaction
9.
Experimental & Molecular Medicine ; : 261-268, 2005.
Article in English | WPRIM | ID: wpr-177646

ABSTRACT

Mouse embryonic stem (mES) cells are capable of undergoing chondrogenesis in vitro. To enhance this process, the human SOX9 (hSOX9) cDNA was delivered into mES cells and the clones overexpressing hSOX9 (denoted as mES-hSOX9 cells) were verified by Western blot analysis. The transcripts of collagen IIA (a juvenile form), aggrecan and Pax1 were expressed in mES-hSOX9 cells grown on feeder layers, suggesting the immediate effect of exogenous SOX9 on chondrogenesis. However, SOX9 overexpression did not affect the cell cycle distribution in undifferentiated mES cells. Upon differentiation, collagen IIB (an adult form) was detected in day 3 immature embryoid bodies. In addition, the overexpression of exogenous SOX9 significantly induced transcriptional activity driven by SOX9 binding site. Taken together, we for the first time demonstrated that constitutive overexpression of exogenous SOX9 in undifferentiated mES cells might have dual potentials to induce both chondrogenic commitment and growth capacity in the undifferentiated status.


Subject(s)
Animals , Humans , Mice , Cell Differentiation/genetics , Cell Line , Chondrogenesis , Collagen Type II/genetics , Embryonic Structures/cytology , Enhancer Elements, Genetic/genetics , Extracellular Matrix Proteins/genetics , Genetic Markers/genetics , High Mobility Group Proteins/genetics , Lectins, C-Type/genetics , Paired Box Transcription Factors/genetics , Proteoglycans/genetics , Stem Cells/metabolism , Transcriptional Activation , Transcription Factors/genetics
10.
The Medical Journal of Malaysia ; : 190-191, 2004.
Article in Malayalam | WPRIM | ID: wpr-629960

ABSTRACT

This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.


Subject(s)
Actins/genetics , Cartilage/transplantation , Cellular Senescence/physiology , Cells, Cultured , Chondrocytes/cytology , Collagen Type I/genetics , Collagen Type II/genetics , Ear, External , Fibroblasts/cytology , Gene Expression/physiology , Mice, Nude , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Tissue Engineering/methods
11.
The Medical Journal of Malaysia ; : 188-189, 2004.
Article in Malayalam | WPRIM | ID: wpr-629959

ABSTRACT

Cartilage is regularly needed for reconstructive surgery. Basic research in tissue engineering is necessary to develop its full potential. We presented here the expression profile of type II collagen gene and type I collagen gene in human auricular monolayer culture expansion. Cultured chondrocytes documented a reduction in the expression level of collagen type II gene whilst collagen type I gene was gradually expressed through all the passages. This study demonstrated that human auricular chondrocytes lose its phenotypic expression during monolayer culture expansion. Further studies are required to enhance cartilage specific gene expression, collagen type II throughout the in vitro culture.


Subject(s)
Cells, Cultured , Chondrocytes/cytology , Collagen Type I/genetics , Collagen Type II/genetics , Ear, External , Fibroblasts/cytology , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Tissue Engineering/methods
12.
The Medical Journal of Malaysia ; : 7-8, 2004.
Article in Malayalam | WPRIM | ID: wpr-629915

ABSTRACT

The regulation roles of insulin-like growth factor-1 (IGF-1) with basic fibroblast growth factor (bFGF) and transforming growth factor beta 2 (TGFbeta2) in human nasal septum chondrocytes monolayer culture and cartilage engineering was investigated in this study. The role of IGF-1 with bFGF and TGFbeta2 was investigated by measuring chondrocyte growth kinetic and collagen genes expression. IGF-1 together with bFGF and TGFbeta2 promote cartilage tissue engineering, increase type II collagen expression and enhance the histological features of engineered cartilage.


Subject(s)
Cartilage/transplantation , Cell Division/physiology , Chondrocytes/cytology , Collagen Type II/genetics , Culture Media, Serum-Free , Gene Expression/physiology , Growth Substances/physiology , Insulin-Like Growth Factor I/physiology , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL